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Supplemental Figure Legends

Figure S1: Comparison of a pseudo-symmetric crystal packing interface observed in the
Sin structure with the analogous 2-3’ interface of yd resolvase (Rice and Steitz, 1994b)
Only the N-terminal domains of the monomers contributing residues to the interface are
shown. Residues F52 and R54 are shown for Sin, and residues R2, R32, K54, and E56
are shown for Y0 resolvase. Mutation of these residues affects communication between
catalytic and regulatory sites within the synaptic complex (see text) (Hughes et al., 1990;
Murley and Grindley, 1998; Rice and Steitz, 1994a). R54 (orange) and F52 of Sin have

roles in the interface analogous to R2 (orange) and E56 of yo resolvase.

Figure S2: Sequence alignment of Sin and related serine recombinases

The top three rows show secondary structural assignments of serine recombinases for
which crystal structures are available: y6 resolvase (Yang and Steitz, 1995), Hin invertase
(Feng et al., 1994), and Sin. All structural and genetic work in this study involved Sin-
pI9789. Resolvases known or inferred to act on “Sin-like” res sites include 3

recombinase, Tn1546 and pXO1 resolvases, and all seven variants of Sin. Resolvases



known or inferred to act on res sites with three dimer binding sites include those from Y95,
Tn3, Tn21 and TnARS1 and the ParA resolvase from RP4. Additional domains of the
large serine recombinases (CcrA & ¢C31) and IS607 transposase have been excluded
from the alignment and are represented by “hth” for helix-turn-helix domain or “ctd” for
C-terminal domain. Residues are color-coded by chemical property. Residues that were
highlighted in the screen for site II synapsis mutants are labeled with an asterisk (*). The
position of a supressor mutation, H166R, that restores site II synapsis in a synapsis-
deficient S153T background, is labeled with a filled circle (®). Positions of activating
mutations are labeled with diamonds (¢) and positions of residues that are implicated in
site I — site Il communication are labeled with open circles (O) (see text, Fig 5). The

position of the sharp kink in Sin helix E is denoted with a wedge (v ).

Figure S3: Attempts to model a hypothetical NTD-mediated site II synapsis interface
(stereo view)

A. The NTD-mediated Sin site II synaptic tetramer (Fig 3A) was docked with IHF-DNA
complexes (extra basepairs from each complex were overlapped to attain the proper DNA
register) in order to visualize the resulting architecture of the hypothetical regulatory
module. The ends of the DNA bound by IHF are separated by approximately 180 A,
much further than the ~90 A that separates ends of the site I duplexes bound by the v&
resolvase catalytic tetramer, which Sin is thought to resemble. The DNA duplexes form a

single (+) right-handed crossing node, whereas the synaptic complex is predicted to trap 3

(-) left-handed nodes.



B. One of the Sin dimers has been rotated 180° about the NTD interface. Although the
structure now defines a (-) node crossing at site II, the DNA ends are separated by 120 A,
substantially further than the ~90 A predicted to separate ends of the site Is in the

catalytic tetramer, and it is not clear how two additional (-) nodes could be trapped.

Figure S4: Ramachandran plot of final Sin model generated using PROCHECK

(Laskowski et al., 1993).

Figure S5: Experimental electron density maps (no model phase information)

A. Bromine anomalous difference map (contoured at 7.0c) showing positions of the 5-Br-
dU bases used in phasing. The positions of the peaks were used to unambiguously assign
the register of the DNA.

B. Stereo-view experimental electron density map of the site II-bound Sin dimer. The
map is contoured at 1.0c and is color-coded to show all density within 3.5 A of all atoms
of each of the Sin monomers (blue, green) and the site II duplex (orange). The
interdomain linker of the green monomer is clearly visible.

C. The experimental electron density map (contoured at 1.0c) shows clear density for

individual B-strands within the Sin NTD.
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Plot statistics
Residues in most favoured regions [A,B,L] 566 82.3%
Residues in additional allowed regions [a,b,l,p] 114 16.6%
Residues in generously allowed regions [~a,~b,~l,~p] 0 0.0%
Residues in disallowed regions 8 1.2%
Number of non-glycine and non-proline residues 638 100.0%
Number of end-residues (excl. Gly and Pro) 142
Number of glycine residues (shown as triangles) 40
Number of proline residues 24
Total number of residues 894
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